To evaluate the integral, consider lims→0∫0∞e−stsinttdt=lims→0L(sintt)=lims→0∫s∞L(sint)ds=lims→0∫s∞1s2+1ds=lims→0(tan−1∞−tan−1s)=lims→0π2−tan−1s=π2
where we have used the formula for integral of Laplace Transform.